

EGU General Assembly Vienna, Austria, 15-20 April 2007

Statistical study of Alfvénic fluctuations in the Earth magnetosheath

O. Alexandrova⁽¹⁾, E. Budnik⁽²⁾, V. Genot⁽²⁾, C. Lacombe⁽¹⁾, C. Jacquey⁽²⁾, I. Dandouras⁽²⁾, E. Lucek⁽³⁾

(1)LESIA/CNRS, Observatoire de Paris, France (2)CESR/CNRS, Toulouse, France (3)Imperial College, London, UK

> <u>olga.alexandrova@obspm.fr</u> <u>http://cdpp.cesr.fr</u>

1. Motivation – observation of Alfvén vortices in the Earth magnetosheath

2. The goal of statistical study

Establish the rules of appearance of Alfvén vortices in the Earth magnetosheath as a function of

- the position in the magnetosheath
- the local plasma parameters
 - Plasma β
 - Angle between the plasma flow and the mean field Θ_{BV}
 - Mean field amplitude B₀
 - Temperature anisotropy of the ions $T_{\perp}/T_{||}$
- the shock parameters
 - Angle between the shock normal and the IMF direction Θ_{BN}
 - Alfvenic Mach number M_a = V/V_A
 - Magnetosonic Mach number M_s
- the upstream solar wind parameters
 - Amplitude of B_{IMF}
 - Solar wind pressure ρV²
 - Concentration of α -particles
 - Angle between the solar wind velocity and the IMF $\Theta_{\mathrm{BV}}^{\mathrm{sw}}$

3. Data and tests

We use 2 months of CLUSTER data (01/02/2001-31/03/2001)

- 0.2 sec FGM data
- Onboard CIS/HIA moments
- Held in a multi-instrument, CLUSTER specialised database DD-CLUSTER, http://manunja.cesr.fr/DD SEARCH
- In the solar wind, we use ACE data

Test magnetosheath/solar wind:

- magnetic field increases across the bow-shock ⇒
 |B|_{Cluster}/|B|_{ACF}>1.3
- when B₀ || X_{GSE} there is no significant changes in |B|, so we verify that the angle Θ_{BV} <20° or Θ_{BV} >160°

Magnetosheath boundaries and fractional distance

$$F_{\rm mipm} = \frac{r - r_{\rm MP}(\vartheta_{\rm mipm}|\rho V^2, B_z)}{r_{\rm BS}(\vartheta_{\rm mipm}, \varphi_{\rm mipm}|M_{\rm a}, M_{\rm s}, \vartheta_{\rm bv}) - r_{\rm MP}(\vartheta_{\rm mipm} \mid \rho V^2, B_z)}. \label{eq:Fmipm}$$

- \mathbf{r}_{mp} is the magnetopause position, that depends on ρV² and B_z [Shue et al,1998]
- \mathbf{r}_{BS} is the bow shock position, that depends on the Mach numbers M_a and M_s ; and on the angle Θ_{BV} in the solar wind [Verigin et al., 2001, 2003, 2006]
- For a position **r** inside the magnetosheath, the fractional distance F is between 0 (MP) and 1 (BS)

4. Data analysis

Definitions

- δB : magnetic fluctuations on time scale τ
- $-\delta B_{||}$: longitudinal fluctuations
- $-\delta B^2_{\perp}$: energy of transverse fluctuations
- A_B: anisotropy of magnetic fluctuations

Identification method

- test on the magnetic anisotropy : A_B > 1
- test on the minimum variance direction : Θ_{Bminv} < 30°

$$\delta \mathbf{B} = \mathbf{B} - \langle \mathbf{B} \rangle_{ au}$$

$$\delta B_{\parallel} = rac{\delta {f B} \cdot {f B}_0}{B_0}$$

$$\delta B_{\perp}^2 = \sum_{i=x,y,z} \delta B_i^2 - \delta B_{\parallel}^2$$

$$T \gg \tau$$

$$A_B = \frac{\left\langle \delta B_{\perp}^2 \right\rangle_T}{\left\langle \delta B_{\parallel}^2 \right\rangle_T}$$

Preliminary results

We consider δB on time scale $\tau = 5$ sec with T=300 sec

GIPM reference frame:

x - aberrated X_{gse} y - || or anti-|| to the projection of the IMF on $(YZ)_{qse}$ plane

- Red circles : conditions are verified
- Black circles : conditions are not verified
- Yellow circles:
 Cluster is in the solar wind, but the model indicates the magnetosheath

• Alfvenic fluctuations at scale τ =5 sec as a function of the local plasma parameters (B₀, Θ_{BV} , Θ_{Bminv} , β , $T_{\perp}/T_{||}$)

- $-A_B$ seems to increase with B_0 , with Θ_{BV} and with $T_{\perp}/T_{||}$
- A_B seems to decreases with Θ_{Bminv} and with β

• Alfvénic fluctuations (τ =5 sec) as a function of the the shock parameters (Θ_{BN} , M_a , M_s) and the fractional distance R_{fr}

- The conditions are verified especially for Q-⊥ bow-shocks, increase with Θ_{BN}; decrease with M_a (~ upstream β)
- No dependence on the distance from the shock (on R_{fr})

• Alfvénic fluctuations (τ =5 sec) as a function of the upstream solar wind parameters ($B_{IMF}, \Theta_{BV}, \rho V^2, \alpha$ -particules)

- No clear dependencies on SW-pressure and α -particles abundance
- Dependence on IMF : A_B seems to increases with Θ_{BV} and with B_{IMF}

Conclusions

- At time scale τ = 5 sec (i.e. f=0.2 Hz, just below f_{ci}) the magnetic fluctuations becomes more Alfvenic when
 - B_0 increases (in the sw and in the magnetosheath) & β decreases
 - Angle between B_0 and the min variance direction Θ_{Bminv} decreases
 - Angle $\Theta_{\rm BV}$ increases (in the sw and in the magnetosheath)
- The anisotropic Alfvenic fluctuations appear preferentially downstream of $Q\perp$ bow-shocks (Θ_{BN} is correlated with Θ_{BV} in the solar wind)
- These fluctuations are independent on the position in the magnetosheath

Perspectives

- Analysis of other time periods
- Analysis of different time scales (up to 1 second)
- Spectral shape test (?)