

Python tools for CDPP/AMDA and Machine Learning

 Schulz Alexandre ¹
 Benjamin Renard ¹
 Nicolas André ¹
 Christian Jacquey ¹
 Vincent Génot ¹
 Myriam Bouchemit ¹
 Nicolas Dufourg ²

 Illya Plotnikov ¹
 Nicolas Aunai ³
 Alexis Jeandet ³
 Myriam Bouchemit ¹
 Nicolas Dufourg ²

¹Centre de Données de la Physique des Plasmas, IRAP Toulouse ²CNES, Toulouse ³Laboratoire de Physique des Plasmas, École Polytechnique, Palaiseau

May 9, 2022

Space Physics made EASY

speasy

speasy is a python package for downloading datasets from various space data providers.

- ► Latest stable version : **0.10.1**
- GitHub : https://github.com/SciQLop/speasy.git
- Documentation : https://speasy.readthedocs.io/en/stable
- Published on PyHC : https://heliopython.org/projects/
- ► Supported data providers include :
 - ► AMDA [1] : http://amda.cdpp.eu
 - CDAWeb : https://cdaweb.gsfc.nasa.gov
 - SSCWeb : https://sscweb.gsfc.nasa.gov
- ► Presented at:
 - ► PyHC 2022 summer school
 - ► Solar Orbiter 2022 summer school

Functionalities

AMDA's Machine Learning Pipeline

Orchestra

Orchestra is a python module used by AMDA for managing Machine Learning modules.

- GitHub: https://github.com/cdppirap/orchestra.git
- ► Execution environment using **Docker**
- ► Integration of models from **Git** repositories
- ▶ Machine Learning models directly accessible in AMDA

Default Models	
ICMEDetection	ICME detection model from WIND data.
EarthRegions	This module use the predefined models available in <u>Github</u> .
Lartintegions	The methode is fully describe in: Automatic detection of Interplanetary Coronal Mass Ejections from in-site data: a deep learning approach - Gautier Nguyen, Nicolas Aunai, Dominique Fontaine, Erwan Le Pennec, Joris Van den Bossche, Alexis Jeandet, Brice Bakkali, Louis Vignoli, and Bruno Regaldo-Saint Blancard - Published 2019 April 2 The American Astronomical Society. The Astrophysical Journal, Volume 874, Number
	2. <u>DOI</u>
	2. <u>DOI</u>

- ► Downloading **time-series**, **time tables** and **catalogs**
- Navigating provider **inventory**: missions, instruments, datasets and components
- ► Local and proxy caching for fast data access
- ► Future developments:
 - ► Full CDAWeb support
 - Multidimensional data support

Getting time-series

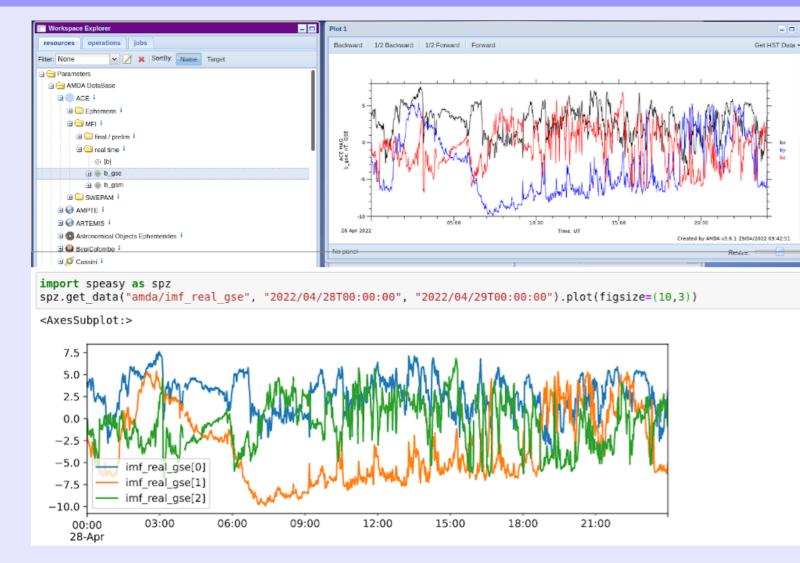
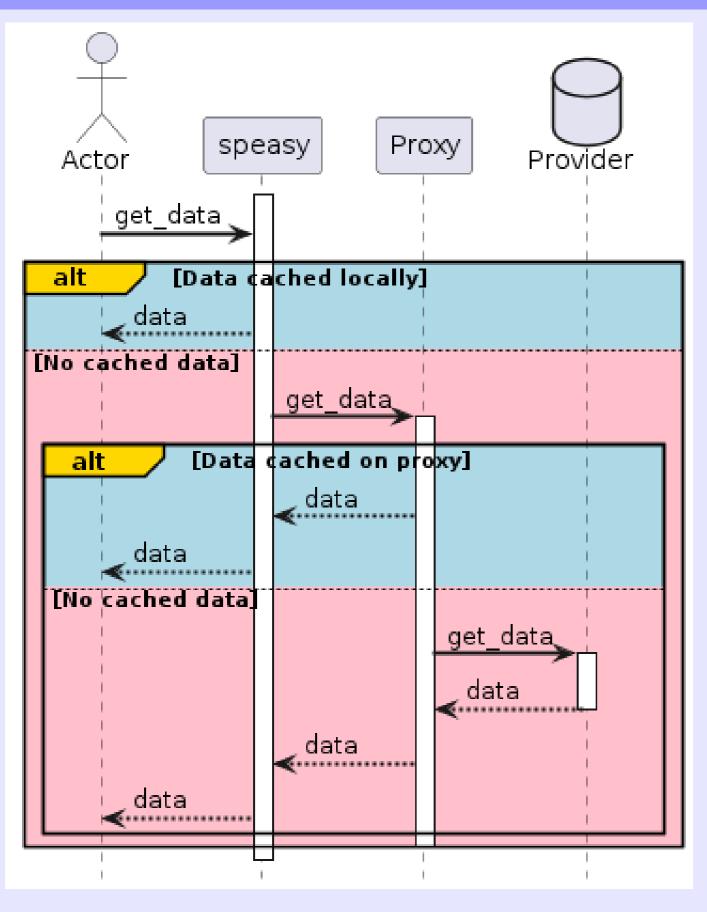
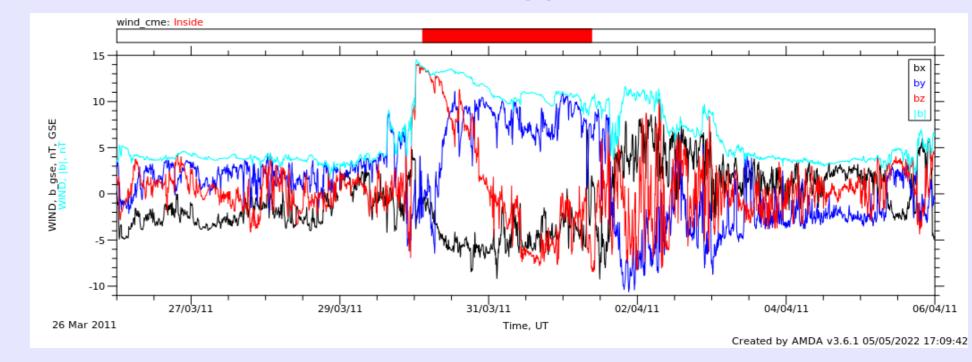
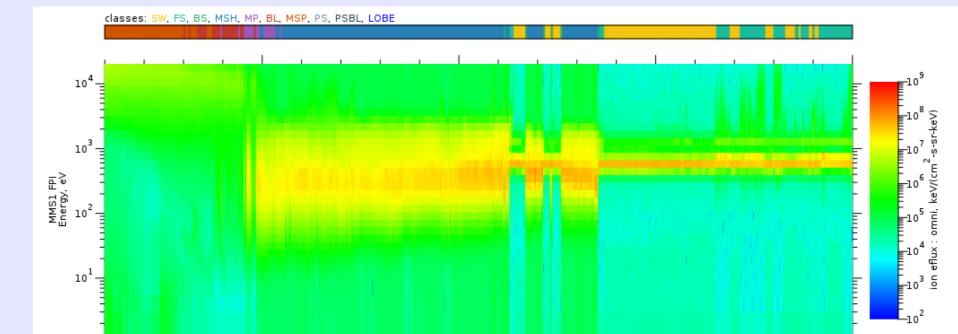



Figure: Plotting data with AMDA and plotting the same data with ${\bf speasy}$


Caching


ICME detection

ICME prediction based on the model defined in [2] by Nguyen et al. using WIND data.

Earth plasma region detection

Prediction of Earth's plasma region obtained by the model defined in [3] by Breuillard et al. using MMS data.

Future developments

- ► Added support for training models on new datasets
- ▶ Include SPIDER project models:
 - Mercury boundary detection models
 - ► ICME detection models

References

- [1] V. Génot et al., Automated Multi-Dataset Analysis (AMDA): An on-line database and analysis tool for heliospheric and planetary plasma data, Planetary and Space Science, vol. 201, https://doi.org/10.1016/j.pss.2021.105214
- [2] G. Nguyen et al., Automatic Detection of Interplanetary Coronal Mass Ejections from In Situ Data: A Deep Learning Approach, The Astrophysical Journal, https://doi.org/10.3847/1538-4357/ab0d24
- [3] H. Breuillard et al., Automatic Classification of Plasma Regions in Near-Earth Space With Supervised Machine Learning: Application to Magnetospheric Multi Scale 2016-2019 Observations, Frontiers in Astronomy and Space Sciences, vol. 7, https://doi.org/10.3389/fspas.2020.00055

Figure: Caching mechanism flow